87 research outputs found

    Equivariant semidefinite lifts and sum-of-squares hierarchies

    Full text link
    A central question in optimization is to maximize (or minimize) a linear function over a given polytope P. To solve such a problem in practice one needs a concise description of the polytope P. In this paper we are interested in representations of P using the positive semidefinite cone: a positive semidefinite lift (psd lift) of a polytope P is a representation of P as the projection of an affine slice of the positive semidefinite cone S+d\mathbf{S}^d_+. Such a representation allows linear optimization problems over P to be written as semidefinite programs of size d. Such representations can be beneficial in practice when d is much smaller than the number of facets of the polytope P. In this paper we are concerned with so-called equivariant psd lifts (also known as symmetric psd lifts) which respect the symmetries of the polytope P. We present a representation-theoretic framework to study equivariant psd lifts of a certain class of symmetric polytopes known as orbitopes. Our main result is a structure theorem where we show that any equivariant psd lift of size d of an orbitope is of sum-of-squares type where the functions in the sum-of-squares decomposition come from an invariant subspace of dimension smaller than d^3. We use this framework to study two well-known families of polytopes, namely the parity polytope and the cut polytope, and we prove exponential lower bounds for equivariant psd lifts of these polytopes.Comment: v2: 30 pages, Minor changes in presentation; v3: 29 pages, New structure theorem for general orbitopes + changes in presentatio

    Equivariant semidefinite lifts of regular polygons

    Full text link
    Given a polytope P in Rn\mathbb{R}^n, we say that P has a positive semidefinite lift (psd lift) of size d if one can express P as the linear projection of an affine slice of the positive semidefinite cone S+d\mathbf{S}^d_+. If a polytope P has symmetry, we can consider equivariant psd lifts, i.e. those psd lifts that respect the symmetry of P. One of the simplest families of polytopes with interesting symmetries are regular polygons in the plane, which have played an important role in the study of linear programming lifts (or extended formulations). In this paper we study equivariant psd lifts of regular polygons. We first show that the standard Lasserre/sum-of-squares hierarchy for the regular N-gon requires exactly ceil(N/4) iterations and thus yields an equivariant psd lift of size linear in N. In contrast we show that one can construct an equivariant psd lift of the regular 2^n-gon of size 2n-1, which is exponentially smaller than the psd lift of the sum-of-squares hierarchy. Our construction relies on finding a sparse sum-of-squares certificate for the facet-defining inequalities of the regular 2^n-gon, i.e., one that only uses a small (logarithmic) number of monomials. Since any equivariant LP lift of the regular 2^n-gon must have size 2^n, this gives the first example of a polytope with an exponential gap between sizes of equivariant LP lifts and equivariant psd lifts. Finally we prove that our construction is essentially optimal by showing that any equivariant psd lift of the regular N-gon must have size at least logarithmic in N.Comment: 29 page

    Sparse sum-of-squares certificates on finite abelian groups

    Full text link
    Let G be a finite abelian group. This paper is concerned with nonnegative functions on G that are sparse with respect to the Fourier basis. We establish combinatorial conditions on subsets S and T of Fourier basis elements under which nonnegative functions with Fourier support S are sums of squares of functions with Fourier support T. Our combinatorial condition involves constructing a chordal cover of a graph related to G and S (the Cayley graph Cay(G^\hat{G},S)) with maximal cliques related to T. Our result relies on two main ingredients: the decomposition of sparse positive semidefinite matrices with a chordal sparsity pattern, as well as a simple but key observation exploiting the structure of the Fourier basis elements of G. We apply our general result to two examples. First, in the case where G=Z2nG = \mathbb{Z}_2^n, by constructing a particular chordal cover of the half-cube graph, we prove that any nonnegative quadratic form in n binary variables is a sum of squares of functions of degree at most ⌈n/2βŒ‰\lceil n/2 \rceil, establishing a conjecture of Laurent. Second, we consider nonnegative functions of degree d on ZN\mathbb{Z}_N (when d divides N). By constructing a particular chordal cover of the d'th power of the N-cycle, we prove that any such function is a sum of squares of functions with at most 3dlog⁑(N/d)3d\log(N/d) nonzero Fourier coefficients. Dually this shows that a certain cyclic polytope in R2d\mathbb{R}^{2d} with N vertices can be expressed as a projection of a section of the cone of psd matrices of size 3dlog⁑(N/d)3d\log(N/d). Putting N=d2N=d^2 gives a family of polytopes PdβŠ‚R2dP_d \subset \mathbb{R}^{2d} with LP extension complexity xcLP(Pd)=Ξ©(d2)\text{xc}_{LP}(P_d) = \Omega(d^2) and SDP extension complexity xcPSD(Pd)=O(dlog⁑(d))\text{xc}_{PSD}(P_d) = O(d\log(d)). To the best of our knowledge, this is the first explicit family of polytopes in increasing dimensions where xcPSD(Pd)=o(xcLP(Pd))\text{xc}_{PSD}(P_d) = o(\text{xc}_{LP}(P_d)).Comment: 34 page

    Semidefinite descriptions of the convex hull of rotation matrices

    Full text link
    We study the convex hull of SO(n)SO(n), thought of as the set of nΓ—nn\times n orthogonal matrices with unit determinant, from the point of view of semidefinite programming. We show that the convex hull of SO(n)SO(n) is doubly spectrahedral, i.e. both it and its polar have a description as the intersection of a cone of positive semidefinite matrices with an affine subspace. Our spectrahedral representations are explicit, and are of minimum size, in the sense that there are no smaller spectrahedral representations of these convex bodies.Comment: 29 pages, 1 figur

    Terracini Convexity

    Get PDF
    We present a generalization of the notion of neighborliness to non-polyhedral convex cones. Although a definition of neighborliness is available in the non-polyhedral case in the literature, it is fairly restrictive as it requires all the low-dimensional faces to be polyhedral. Our approach is more flexible and includes, for example, the cone of positive-semidefinite matrices as a special case (this cone is not neighborly in general). We term our generalization Terracini convexity due to its conceptual similarity with the conclusion of Terracini's lemma from algebraic geometry. Polyhedral cones are Terracini convex if and only if they are neighborly. More broadly, we derive many families of non-polyhedral Terracini convex cones based on neighborly cones, linear images of cones of positive semidefinite matrices, and derivative relaxations of Terracini convex hyperbolicity cones. As a demonstration of the utility of our framework in the non-polyhedral case, we give a characterization based on Terracini convexity of the tightness of semidefinite relaxations for certain inverse problems
    • …
    corecore